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The structures of 5~-androstan-3fl-ol-17-one ( C 1 9 H 3 0 0 2 )  and 5fl-androstane-3~,17fl-diol ( C 1 9 H 3 2 0 2 )  
have been solved through the use of the structure invariants cos (~pl + ¢p2 + tp3). Both these substances 
crystallize in space group P21 with two molecules in the unit cell. The computational procedure whereby 
phases were derived from the invariants is discussed in detail, and a method of calculating invariants 
which is substantially faster is proposed and shown not to result in any loss of accuracy. The computed 
invariants were compared with the observed values, and it was found that invariants for which the true 
value is relatively large are computed more accurately than invariants having smaller values. 

Introduction 

The most difficult par t  of solving acentric crystal 
structures by probability methods lies in the deter- 
mination of a basic set of phases. Depending on the 
space group, one to three phases may be arbitrarily 
specified to select the origin (Hauptman & Karle, 
1956; Karle & Hauptman, 1961), and a few addi- 
tional phases are usually determined by ~1 relation- 
ships (Hauptman & Karle, 1953). After approximately 
50 phases have been found, the tangent formula (Karle 
& Hauptman, 1956) may be employed to evaluate the 
remaining phases needed to solve the structure. 

It is the aim of this paper to show that the structure 
invariants, cos (~0hl + ~0h2 + ~0~), may be used t~ compute 
additional phases when only a few initial phases are 
known. These invariants were first used experimentally 
to solve the structure of the female sex hormone estriol 
(Hauptman, Fisher, Hancock & Norton, 1969; Cooper, 
Norton & Hauptman, 1969; Hauptman, 1970). Sub- 
sequently this method has been used successfully to 
solve the structure of 17fl-trimethylsiloxy-4-androsten- 
3-one (Weeks, Hauptman & Norton, to be published) 
as well as the structures of 5e-androstan-3fl-ol-17-one 
(epiandrosterone, C19H3002) and 5fl-androstane- 
3e,17fl-diol (C19H3202). These last two structures will 
be described in the following paper (Weeks, Cooper, 
Norton, Hauptman & Fisher, 1971). The purposes of 
this paper are to describe the process of phase deter- 
mination by least-squares analysis of structure in- 
variants (with reference being made to the phase- 
determination procedure for epiandrosterone), to 
point out where difficulties are likely to be encountered, 
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and to compare the merits of various methods of 
computing the structure invariants based on the results 
for epiandrosterone and 5fl-androstane-37,17fl-diol. 

Structure analysis 

In space group P2~, the phases of reflections of the 
type hOl, where both h and I are even, are structure 
invariants whose values depend only on the arrange- 
ment of atoms within the unit cell, but the values of 
all other phases depend on the location of the origin 
of the unit cell as well as the atomic positions. The lo- 
cation of the origin may be specified by arbitrarily 
assigning three phases that are linearly independent 
(Hauptman & Karle, 1956). The linear dependence of 
phases is a function of space-group symmetry, and for 
space group P21, the origin may be uniquely deter- 
mined by assigning phases to one reflection with k = 1, 
and to two reflections aOb and cOd which satisfy the 
following conditions: (1) a, b not both even, (2) c, d not 
both even, and (3) the sums a + c and b + d not both 
even. Phases were assigned to 40T, 503, and l lT to 
specify the origin for epiandrosterone. This set was 
chosen from among the many possible sets of linearly 
independent phases because, in each case, both the 
observed structure-factor amplitude, [Fobsh and the 
normalized structure-factor amplitude, [Eobsl, were 
large, and each vector was found to occur in many 
vector triples (hi, h2, h3)* having the property that 

h l + h 2 + h 3 = 0 ,  (1) 

and which also satisfy the condition that IE1E2E3[ be 
large. It is demonstrated below that the probability 
that the structure invariants, cos ((p~ + ~02 -[- (/93) , c a n  be 

* The abbreviations ~01=(Plaa, (,02=q~h 2, ~03=(0h 3, El :Eh  1, 
E2 =Eh2, and E3 = Eh will be used throughout the remainder 

• , . 3 

of th~s commumcatlon. 
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accurately computed increases as the product [EIE2E3[ 
increases. Therefore, reflections with large IE] are 
introduced into the set of reflections with known phases 
whenever possible. 

In space group P21, the ~, formula (Hauptman & 
Karle, 1953; Hauptman, 1970) 

0-32/2 
E2ho2, ~ _ ..... <(-- 1)k (IEhkll 2 -  1)) k (2) 

' '  0-3 

may be used to obtain, with calculable probability, 
phases that are structure invariants; 0-, is defined by the 
relationship 

N 

0-.= z7 (3) 
j = l  

where N is the number of atoms in the unit cell, and 
Zj is the atomic number of the j th atom. The prob- 
ability that the normalized structure factor is positive 
(phase=0) is given by the relationship (Cochran & 
Woolfson, 1955) 

P+(E2,,.o.2t) ~- 

[ 2 l) (Ehkl--1)] .  (4) ½+½tanh 0-~33/2 IE2n,o.zt[ ~ ( -  I, 2 

k 

The results of the application of the Y., formula to those 
reflections in the epiandrosterone data for which [Eohs[ 
was greater than unity are presented in Table 1. A 
sign was considered to be determined if the probability 
that it had the indicated value was greater than 95%, 
and using this criterion, the reflections 204, 604, and 
402 were added to the set of vectors with known phases. 

Table 1. ~l  results for  epiandrosterone 

Probability 
Ec phase True 

Reflection [Eo[ (by ~1) positive sign 
20~ 1-06 0.56 0.58 + 
2074 1.23 - 4"54 0.03 - 
6074 1-75 - 2.92 0.05 - 
8074 1.42 0.79 0.64 4- 
402 1.83 2.81 0.95 4- 
802 1.05 0.76 0.60 4- 

The phases of reflections whose indices satisfy equa- 
tion (1) are linearly dependent, and it is possible to re- 
late all reflections to the origin-determining-reflections 
and those determined by Ya by means of this equation. 
This use of formulas relating the phases of such linearly 
dependent reflections allows the set of known phases to 
be expanded to such an extent that calculation of a 
Fourier synthesis may reveal the crystal structure. The 
simplest of the mathematical formulas of this type is 
the E2 type relationship 

0-32/2 
E_h=E*h ~ _ ~ <EkE_h_k) k (5) 

(Sayre, 1952; Hughes, 1953) which is valid for all 
space groups. In this equation h is a fixed vector, and 

k ranges over all vectors for which - h - k  exists. It is 
obvious that the indices of the triple (h, k, - h - k )  sum 
to zero, and consequently the equivalence 

h=hl ,  k=h2,  - h - k = h 3  (6) 

exists for individual terms contributing to the average 
in equation (5). In the case of noncentrosymmetric 
space groups, other phase relations which have found 
considerable use are 

~oh-~ - ( ( ~ k  + ( O - . - k ) ) k  (7 )  

(Cochran & Woolfson, 1955) and the tangent formula, 

- ~ IEkE_h_kl sin (~0k + ~0-h-k) 
k 

tan (oh - ~ [EkE_h_k I COS (gk + ~0--h--k) (8) 
k 

(Karle & Hauptman, 1956). The tangent formula is an 
extremely powerful tool. It cannot be used effectively, 
however, until several triples exist involving vector h in 
conjunction with pairs (k, - h - k )  for which ~0 k and 
(P-h-k are known. 

The difficulty with using any of the equations (5), 
(7), and (8) when only a few phases are known is that 
they all involve summations, but only a very few terms 
in these summations can be computed, and the cal- 
culated ~0 h may be in error as a result. The probability 
that a single term will accurately yield the unknown 
phase increases as the magnitude of [EIE2E3] increases. 
Equation (7) has found use in connection with the sym- 
bolic addition procedure (Karle & Karle, 1966), in 
which symbols are assigned to a few phases and equa- 
tion (7) applied to triples having two known phases and 
a large value of [E1EzE3[. The third phase is then either 
known or else it can be related to one of the assigned 
symbols, and it is placed in the set of known phases. 
Considerable care must be exercised in the use of equa- 
tion (7) when more than one triple contributes to a new 
phase determination because of the ambiguity arising 
from the multiple-valued nature of the phases. It is 
possible to replace ~ with (9+2nk) where k is any 
integer, and there is nothing in equation (7) to indicate 
which of these is the proper choice. One method of 
circumventing this problem is to introduce arbitrary 
values for the phases of a few (usually one to four) 
reflections having large ]El, and to vary the values of 
phases systematically and use each set of phases so 
obtained as input for the tangent formula. Often one or 
two of the sets of phases output by the tangent formula 
can be selected as more likely to be correct based on 
such criteria as the c~ index (Karle & Karle, 1966), 

20- 3 = ~-32/2 'Eh' [{~  ]EkE-h-k] sin (~0 u +~0_h_l,)} 2 
~h 

which is relatively large for the correct solution. How- 
ever, it may be necessary to compute Fourier syntheses 
from several sets of phases befoce the structure is sol- 
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ved. The obvious drawback to this approach is that 
even if only two arbitrary phases have been introduced, 
it may be necessary to assign several values to each be- 
fore the correct solution is found. Even if only 4 values 
are assigned to each of 2 arbitrary phases, it may still 
be necessary to compute 16 Fourier syntheses, and in 
unfavorable cases, a considerably larger number may 
be required. 

The need for a procedure to eliminate the introduc- 
tion of deliberate ambiguities during the early stages of 
phase determination has led to a renewed investigation 
of the structure invariants cos (~01 + @2 + (if3). A formula 
for computing these invariants which requires knowl- 
edge only of the normalized structure-factor amplitudes 
was first proposed in 1957 [Karle & Hauptman (1957) 
equation (2.2)]. Subsequent theoretical considerations 
have shown that this formula is not valid if the struc- 
ture contains a substantial amount of overlap among 
Patterson peaks (Hauptman, 1964). Equation (10), 

Kg/ R3 (10) 
COS((ffl-t-~2"~-~3)"~ IE1E2E3I + IE1E2E3I' 

where 

~' = ((IEI I p -  IE IP)(IEhl +~ I r 
-IEI~)(IE_n~+~I~-IEI~)>, (11) 

and 

IEI~= <IE, I~>,, (12) 

is a variant of this formula and, in the form where 1 
ranges over all vectors in reciprocal space and the 
exponent p is equal to ½, was first used successfully to 
solve the structure of estriol (Hauptman, Fisher, 
Hancock & Norton, 1969). R3 is a term which depends 
only on the normalized structure factor amplitudes 
IExl, IE21, and IE31. Whenp=½, it takes the form 

R3 = ~ [~(IE~E212 + IE2E3I 2 + IE3Ell 2) 

+IE~I2+IE212+IEa12-½], (13) 

and, when p =2,  

O" 3 
R3= ~2/2 (IE~I2+IE212+IE312-2) . (14) 

K is a scale factor which is expected to be a function of 
A (Hauptman, Fisher, Hancock & Norton, 1969)where 

2cr3 IE~E2Eal (15) A = ~-~23/2 

The distribution of the structure invariants cos (~0~ + ~02 
+ ~03) is a function of A only, and the scale factors are 
chosen to make the distribution of the calculated in- 
variants agree as closely as possible with the theoretical 
distribution. The theoretical distributions of the in- 
variants for several values of A are illustrated in Fig. 
1. The most striking feature about these distributions 
is that, for large A, most invariants are positive, and 
the proportion of invariants whose value is approxi- 
mately unity is large. 

F S T R U C T U R E  I N V A R I A N T S  

If two or more structure invariants, cos (~h + qk + ~--h--k), 
involving a common vector h have been computed, 
they will probably not yield exactly the same value of 
~0 n for two reasons. First, there are always some exper- 
imental errors in the measurement of the normalized 
structure-factor amplitudes, and, in addition, equation 
(10) is known not to be exactly valid for real structures 
having overlapping Patterson peaks. Consequently, the 
best value of fan may be found by minimizing the func- 
tion (Hauptman, Fisher, Hancock & Norton, 1969) 

Wk [COS (~h + :?k + ~:--h--k) -- Ck] 2 
gs= k (16) 

k 

where several structure invariants, 

Ck = COS (fDh + ~k + ~--h--k), (17) 
involving a given vector h, have been determined by 
means of equation (10), and each invariant has been 
assigned a weight 

Wk= lE1E2E3l l/n (18) 

where n is the number of contributors to the average 
in equation (11). The minima in the function • may be 
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Fig. 1. The theoretical distribution of the structure invariants 
cos (tpl + ~2 + ~3) as a function of A. The units on the ordinate 
are arbitrary. 
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located most readily by varying ~0 h from 0 to 2re in 
small increments (e.g. 0.01 radians) and evaluating the 
function at each point. The first time an invariant is 
used which differs significantly from + 1, there will be 
two equal minima in the function 4,  and either of the 
corresponding values of ~0h may be chosen as the correct 
phase since the choice of one of these minima results 
in the selection of one of the enantiomorphs. If the 
structure invariants are internally consistent, and if 
the enantiomorph determining phase is involved direct- 
ly or indirectly in all subsequent invariants whose 
values are not + 1, only one minimum will be in the 
function ~ for each additional phase. In practice, how- 
ever, because the invariants are not computed with 
great accuracy and are not perfectly consistent with 
each other, there will be many cases where there are 
two minima. If these minima are very nearly equal, it is 
necessary to carry both phases through the remainder 
of the computations terminating in the calculation of 
two Fourier syntheses unless one of the phases can, at 
some intermediate stage, be shown to be less likely to 
be correct. Thus, even with the use of the structure in- 
variants, it may not be possible to eliminate all the 
phase ambiguities. The c~ index [equation (9)], which is 
one of the quantities used to indicate the reliability of 
the phasing in the tangent formula, was discussed 
above. Similar criteria have been used in an attempt to 
judge the accuracy of phases determined from the 
structure invariants through equation (16) (Hauptman, 
1970). One such quantity, the individual residual for 
vector h, 

Rh = a51/2 ~- r~tn (19) 

is simply the square root of a weighted minimum of the 
function 4.  The cycle residual, 

L Z(F Oj, 
is a weighted average of the individual residuals for all 
vectors h for which phases were calculated during the 
cycle. The centrosymmetric residual, 

Rcentro = 

- d 2 1/2 

l (21) 

(where dh is the deviation of the phase of a purely real 
or purely imaginary structure factor from the nearer of 
its two allowed values, or in the case of phases deter- 
mined by fixation of the origin or through use of the E1 
formula, the deviation from the known value), is also 
a measure of the accuracy of phases computed during 
a single cycle. These residuals will presumably be small 
when the use of the structure invariants leads to correct 
phases. 

In the case of epiandrosterone, the phases of six 
independent spectra and the phases of their eight 
symmetry-related reflections were initially known. 

Using this set of reflections as vectors k and - h - k  all 
possible vectors h were generated, and for each of these 
vectors, the summation, ~Ak, over all triples (h, k, 

u 
- h - k )  was constructed. The reflection 513, for which 
this summation was the largest (~A=5.98) ,  was 
selected as the first reflection whose phase was to be 
determined from the structure invariants by mini- 
mizing the function O) defined in equation (16). This 
reflection and its three symmetry-related reflections 
were added to the set of vectors with known phases, 
additional triples were generated, summations were 
incremented, and the 3 vectors (112, 512, and 803) 
with the largest summations were added to the set 
with known phases. This process was continued for 
21 additional cycles in which 5, 7, 9, 11, . . .  vectors 
were successively selected until the order in which the 
phases of all 533 reflections with IEI > 1 were to be 
found, was specified. Twelve cycles of this procedure 
were sufficient to select 150 reflections among which 
there were 1971 independent vector triples whose in- 
dices were related by equation (1). For each of these 
triples, the average in equation (11) was computed 
using an exponent p = ½ and allowing I to vary over all 
measurable reflections, and the corresponding R3 
terms were computed by means of equation (13). 

To find the scaling parameter K, the triple.s with 
their associated averages and R 3 terms were sorted on 
increasing value of A and divided into 17 groups with 
120 triples in each of the first 15 groups and 86 and 85 
triples in the last 2 groups; the average A was found for 
each group. Within each group, the triples were sorted 
so that the terms ~/[EaEaE3I [equation (11)] were in 
decreasing order, and inspection of equation (10) 
shows that this amounts to sorting according to the 
value of the invariant since A and R3 are approximately 
constant within a group. 

Some intermediate calculations which were per- 
formed to find the value of K for the second group of 
triples (which had (A)=0 .53  and R3/IE1EzE31--- 0"23) 
are presented in Table 2. An extensive table of the 
conditional probability that cos (~01 + ~02 + 9)3) is greater 
than X for several values of A and X has been pub- 
lished (Hauptman, 1970, Table V), and the probability 
that a given invariant with A~0.53 is greater than 
X=0.071, 0.170, 0.267, . . . ,  0.995 was read from this 
table. The value of ~/IE1E2E31 for that invariant 
which should be closest to X in value was then found. 
For example, the probability that cos (rpl + (P2 + rp3) > 
0.622 is 42% if A =0.53, and 42% of the invariants in 
the experimental group will be greater than 0.622 if the 
invariant for the 50th term in the sorted list, which had 
~,/IEIEzE31=O.O00371 and R3/IE1EzE31=0.217, is set 
equal to 0.622. This will be the case if K =  1092.* 

* From equation (10), 
0.622- R3/IE1E2E31 K= 

~/IE1EzE3[ 
and 

K= (0.622- 0.217)/0.000371 = 1092. 



1554 L E A S T - S Q U A R E S  A N A L Y S I S  O F  S T R U C T U R E  I N V A R I A N T S  

Tab le  2. K values for the group of 120 epiandrosterone 
triples having an average A =0 .53  

The term R3./IE1E2E3[ is approximately constant for these 
triples and is in the range 0.215-0.255. 

X 
0"071 
0"170 
0"267 
0"362 
0"454 
0"540 
0"622 
0"698 
0"765 
0"825 
0"878 
0"921 
0"955 
0"980 
0-995 

Probability ~' 
COS((Pl-'}-¢ff2-q-~3)>'X [E1E2E3[ x 104 K 

0"64 1"21 - 1277 
0"61 1"56 -386  
0"57 1"98 233 
0"54 2"45 535 
0"50 3"07 742 
0"46 3"34 864 
0.42 3"71 1092 
0"38 3"94 1142 
0-34 4-12 1309 
0"29 4"61 1290 
0"25 5"30 1229 
0.20 6"18 1110 
0" 15 7"44 946 
0"10 8-27 884 
0"05 9"53 801 

Values o f  K were also compu ted  in ana logous  
fash ion  for  the o ther  values o f  X, and  they are l isted in 
Table  2. I f  this sample  o f  averages  were large and  

r a n d o m ,  and  if  the accuracy o f  averages c o m p u t e d  by 
equa t ion  (11) were independen t  o f  the t rue value  o f  the 
invar iant ,  all  the values for  K so ob ta ined  should  be 
near ly  equal,  bu t  it is observed tha t  this is no t  the case. 
K c a n n o t  be negative because, i f  this were true, in- 
var ian ts  for  which the averages were smallest  (negative) 
wou ld  give the largest values o f  cos (~01 + 92 + q~3). The  
instabi l i ty  seen in the values o f  K results f rom divis ion 
by a n u m b e r  which is very close to zero (i.e. ~/[EIE2E31), 
and  if, because o f  exper imenta l  error,  a t e rm with a 
posi t ive average is used when  a negat ive one  shou ld  
be, K will have  the wrong  sign. Consequent ly ,  it is 
necessary to find tha t  region in which  the calcula ted 
values o f  K are posi t ive and  reasonab ly  cons tant ,  and  
to find the average K in this region.  In  the case o f  these 
data,  K was f o u n d  to be reasonably  stable for  al l  
groups  o f  triples in the range  X = 0 . 6 2 2  to 0-955, 
regardless of  the average value  o f  A for  tha t  group.  The  
values o f  K for  the var ious  ranges o f  A are p lo t t ed  in 
Fig. 2 to show the dependence  o f  K on  A, and  it  was 
f o u n d  f rom a least-squares analysis  t ha t  K equals  
1015 + 2 6 7  A for the ep iandros te rone  data.  

The  1971 s t ructure  invar iants ,  cos(91+q~2+q~3), 
involving the first 150 reflections were then  calculated,  

Cycle I 

Cycle 2 

Cycle 3 

Invariants involving 202[ 

Table  3. Some structure invariants used during the least-squares calculations for epiandrosterone 

hi h2 

l l T  ~ 0 4 -  5 
l i t  4 0 ~  5 

4 0 i  5 T 3  1 
4 0 i  1 1 1  5 
4 O T  4 o ~  g 

6 0 ~  T T 2  
4 0 T  2 [ 0 2  0 
5 1 3 5 1 2 ~0 
l l T  1 1 2  0 
4 0 T  ~ 0 3  1 
4 0 T  ~ 0 4  2 
l l T  1 T 2  2 
4 0 ~  T T 2  
4 0 T  T T 1  
5 1 ~  g O 3  3 
l i e  5 1 ~  
1 1 T  5 1 ~  

2 0 2 [  T T O  T 
2 0 2 [  T ~ O  T 
2 0 ~  ~ i 5  4 
2 0 2 [  3 2 2  5 
2 0 2 [  g 1 2  6 
2 0 2 [  ~ 2 i  1 
2 0 2 [  1 1 ~  3 
2 0 2 [  1 0 2  ~ 
2 0 2 [  T T 3  T 
2 0 2 [  2 [ i 0  2 
2 0 2 [  5 T 3  3 
2 0 ~  T S T  T 
2 0 2 [  ~ 1  4 
2 0 2 [  2 1 0 1  2 
2 0 2 [  ~ 0 3  0 

Predicted Observed 
h3 A cos (q~l + (o2 + (o3)* cos (~1 + (o2 + q~s) 

1 3 2.92 0.46 1.00 
1 3 3.06 1.09 1.00 

1 2 4.45 0.81 0.50 
T 2 3.64 0.92 0.99 
0 3 3-76 1.32 1.0 

1 2 2.44 0.39 0.41 
0 1 3.50 1.32 1-0 
0 1 3-60 0.97 1-0 
0 1 3.70 0.81 0.56 
0 ] 3.51 0.95 1.0 
0 ] 1.73 0.48 1-0 
0 3 1.92 0.24 0.56 
1 0 1.40 1.01 0.33 
1 0 2.00 0.98 0-97 
i" 0 2.12 1.07 0-98 

4 2.78 1-08 0.71 
4 3.33 1.21 0.99 

1 4 0-40 - 0-03 0.90 
2 4 0.43 -0.23 -0-32 
1 i 0.64 -0.19 0.24 

2 0.71 0.18 0-99 
i 2 0-72 0.37 0.76 
2 5 0.73 0-19 0.89 
1 7 0.79 0.09 0.23 
0 6 0.79 0.47 1-00 
1 1 0.84 -0.07 0.38 
1 4 0.88 0.19 0.98 
1 1 0.96 -0.18 0.45 
5 5 0.96 0.38 0.67 
6 3 0.97 0.12 0.94 
0 3 1-00 0-37 1-00 
0 1 1.10 -0.06 1-00 

* The exponent p [equation (10)] was ½, and I ranged over all measurable reflections (lEd > 0). The scaling parameter used was 
K= 1015+267 A. 
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and the phases of these reflections were found by 12 
cycles of the least-squares procedure outlined above. 
The invariants used during the first three cycles are 
listed in Table 3. Several of these invariants were cal- 
culated to be greater than 1 and a few less than - 1, but 
before calculation of the function q~ [equation (16)], 
such invariants were set equal to + 1 or - 1 ,  respec- 
tively. In noncentrosymmetric space groups, the enan- 
t iomorph is selected the first time a phase is assigned 
that has substantially different values for the two 
enantiomorphs. This requires the use of a structure 
invariant whose value is different from _+ 1. The first 
calculated invariant to be used for epiandrosterone 
involved the reflections liT, 604, and 513; since the 
computed value, 0.46, was significantly different from 
+ 1, the function q~ had two equal minima in the first 
cycle, and the value 0.73 was arbitrarily chosen for 
¢Ps~x to specify the enantiomorph. The results of the 
least-squares process for the first three cycles are 
presented in Table 4. In the second cycle, two addi- 
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Fig.2. The dependence of K on A. Epiandrosterone, IE, 

greater than: 0.0, ©" 1.0, I7; 2.0, A. 5fl-androstane-30ql7fl- 
diol, IEtl greater than • 0.0, 0 ;  1.0, m; 2.0, A. 

tional reflections (112 and 512) were encounted each of 
which had two equal minima in the least-squares func- 
tion. These phases are ambiguous because the last 
arbitrary choice of phase was made in specifying the 
enantiomorph, and these ambiguities arise because 
there is only one invariant contributing to each phase 
determination. If a calculated phase is not 0 or n and 
there is only one contributor, there will always be two 
solutions because, for all angles except 0 and n, there 
is a second angle having the same value of the cosine. 
A second contributor is needed to resolve such am- 
biguities, and, unfortunately, it is not always possible 
to avoid them at the beginning of phase determination 
since there may not be an alternate path for building 
up a set of phases. 

In the third cycle, other double minima occur but 
there are no additional ambiguities of the type en- 
countered with the reflections 112 and 512. The two 
minima for 203 do not create an ambiguity because the 
second residual is much larger than the first. While the 
two residuals for 102 are equal, this phase is still 
determined because it is known to be a centrosymme- 
tric phase with a value true of either 0 or n, and both of 
the calculated minima lie close to one of these values. 
In no instance were more than two minima observed. 

A disturbing feature in the results of the least- 
squares phase determination procedure, is that the 
calculated phase for 204 was 0 (see Table 4) whereas the 
~1 formula had strongly determined this phase to be n. 
Input phases that have been determined by origin 
specification or through use of the Y l formula are nor- 
mally used at their original value in all phase-deter- 
mination cycles regardless of the calculated value in 
the previous cycle. Consequently, the least-squares 
procedure was repeated with the alternative phase for 
204; little difference was observed in the two sets of 
cycle residuals (Table 5) and ~020~ " was still calculated 
to be 0. Three additional runs, in which ~0z0g=0, and 
which differed from each other in the initial minimum 
selected for 112 and 512 were then performed. Again, 
the cycle and centrosymmetric residuals were all about 
equally good, and it was also impossible to select the 
set of phases most likely to be correct based on the 
criterion that there be little fluctuation of calculated 
values of a single phase in successive cycles. Because 
of the ambiguities with the reflections 204, 112, and 
512, it was necessary to perform 8 runs in the tangent 
formula. The set of 150 phases resulting from the first 
least-squares run in which ~0z0 g equaled 0 was arbitrarily 
chosen, and 11 cycles in which no phases were forced to 
the input values, were performed using the tangent 
formula to determine phases for all 533 independent 
X-ray spectra with [E] > 1. All phases were then re- 
fined for five additional cycles. The phase of the 204 re- 
flection fluctuated from 0 to n during the tangent 
formula cycles, and in the final refinement cycles, it 
was consistently calculated to be n. 

A Fourier map was prepared using all 533 phases re- 
sulting from the final tangent formula refinement 
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cycle ,  a n d  p e a k s  w e r e  f o u n d  t h a t  a p p e a r e d  to  fit the  
e x p e c t e d  m o d e l  o f  e p i a n d r o s t e r o n e .  Pos i t ive  e l e c t r o n  
d e n s i t y  w a s  f o u n d  at  the  p o s i t i o n s  o f  al l  the  n o n h y -  
d r o g e n  a t o m s ,  b u t  t he  ax ia l  c a r b o n s ,  C(18)  a n d  C(19) ,  

as wel l  as t he  t w o  o x y g e n  a t o m s ,  0 ( 3 )  a n d  O(17) ,  w e r e  
n o t  so we l l  r e s o l v e d  as t he  a t o m s  in t he  s t e r o i d  n u c l e u s ,  
F o u r  cyc les  o f  l e a s t - s q u a r e s  r e f i n e m e n t  o f  t h e  pos i -  
t i o n a l  a n d  i s o t r o p i c  t h e r m a l  p a r a m e t e r s  o f  t h e  21 

T a b l e  4. Some results of the least-squares phase determination cycles for epiandrosterone 

Cycle h 

202[ 3.14 
602[ 3.14 

Input 50] 0.00 
(origin and Y l) 40~ 0.00 

4OT o.oo 
11T o.oo 

Number  of 
invariants 

contributing 
to phase 1st (lowest) minimum 2nd minimum 

determination ~0h (rad) Rh ~h (rad) Rh 

1 51~* 2 0.73 0.27 

60~ 1 3.14 0.29 
80~* 1 0.00 0.00 
513 2 0.73 0.27 

2 40~2 1 0.00 0.25 
112" 1 1.35 0.00 
512" 1 0.41 0.00 
11T 2 0.73 0-27 

60~ 2 3.14 0.25 
62~* 2 1-23 0.13 
20~* 2 3.14 0.27 
803 1 0-00 0-00 
51~ 3 0.73 0.20 
10~* 1 0.32 0.00 

3 402 2 0.00 0.21 
11~2 2 1"40 0.09 
51~ 2 0.31 0.05 
40i  5 0.00 0-00 
111" 3 0.00 0.21 
310" 3 - 2 . 5 0  0.17 
001" 3 0.00 0.40 

4 20~ 1 - 2-32 0.00 
5 20~ 2 0.00 0-63 
6 20~ 2 0.00 0.63 
7 202[ 3 0.00 0.59 
8 202[ 4 0.00 0.46 
9 202[ 5 0.00 0.45 

10 202[ 5 0.00 0.51 
11 202[ 10 0.00 0.68 
12 202[ 12 0.00 0.67 

* This phase was first determined in this cycle. 

- 0"73 0.27 

0.00 0"27 

O" 11 0.00 
-0 .41  0.00 

0-00 0-27 

0.00 0.86 

- 0.32 0.00 

0-61 0.30 

0.56 0.27 

2.32 0-00 

- 3 . 1 0  0.70 
3.14 0.61 
3.14 0.67 

- 3 . 1 2  0.74 
- 3 . 1 0  0.76 

T a b l e  5. Average residuals for the least-squares phase determination cycles for epiandrosterone 

Cycle residual Centrosymmetric residual 
No. No. 

Cycle reflection 92 o~ = n 92 o~ = 0 reflection ~02 o~ = rc tP2 o~ = 0 
1 1 0-27 0"27 0 - -  - -  
2 7 0.22 0"22 3 0"00 0"00 
3 13 0.21 0.22 6 0.07 0-07 
4 22 0"29 0.29 10 0.34 0.30 
5 31 0.30 0-30 12 0"46 0.50 
6 42 0.34 0"34 12 0.42 0"36 
7 55 0.36 0.37 14 0.49 0-44 
8 70 0.35 0.36 16 0.45 0.43 
9 87 0.37 0.42 16 0"42 0"43 

10 106 0.41 0.42 18 0.37 0.33 
11 127 0.40 0.39 22 0.43 0.41 
12 150 0"37 0-37 23 0"33 0"37 
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atoms were performed using all observed reflections 
and a block-diagonal approximation to the normal 
equations. The R indices in successive cycles were 
47.8, 38.3, 36.9, and 36.7%, and the phase of the 204 
reflection, as calculated using the original atomic posi- 
tions, was equal to 0. Since this refinement appeared 
to converge after two or three cycles, and since there 
were no individual isotropic temperature factors which 
became either very large or very small and the overall 
geometry of the steroid molecule appeared to be quite 
satisfactory, it was hypothesized that the entire mol- 
ecule had been translated into a false minimum as the 
result of an incorrect phase assignment during the 
early stages of the phase buildup. 

Examination of the unit-cell dimensions, and of the 
Patterson synthesis, showed that the molecule was 
located in the unit cell with its long axis almost parallel 
to the twofold screw axis. One conspicuously large 
peak, which indicated the position of the center of 
mass of the molecule, was observed on the Harker sec- 
tion, and it was found that this position was related to 
the location of the molecule on the Fourier map by a 
translation perpendicular to the 204 planes over a 
distance approximately equal to one and one half 
times the spacing of these planes. The molecule was 
translated so that the position of its center of mass 
coincided with the location of this large peak, and 
following refinement of the atomic positional and ani- 
sotropic thermal parameters the R index fell to a final 
value of 6.4%. The final phase of the reflection 204 
w a s  ~ .  

To try to understand the behavior of the 204 reflec- 
tion, the true invariants, cos (~01 + ~02+ ~03), were com- 
puted using the phases for the refined structure and 
were compared to the predicted invariants. The 15 
invariants involving the 204 reflection which were 
used in the least-squares phase determining procedure 
are listed in Table 3. In all but one case, the value of the 
predicted invariant is less than the observed value for 
the refined structure. This distinctly nonrandom devia- 
tion of the predicted invariants from their true values is 
not the normal situation as can be seen from Table 6 
where the root-mean-square deviation and average 
deviation of all predicted invariants involving a com- 
mon vector are listed for several centrosymmetric re- 
flections. Although there are other cases (201 and 603) 
where the r.m.s, deviation is relatively large, there is no 
other case where the average deviation is as large as it 
is in the case of 204, and a large average deviation is 

indicative of nonrandom error. The fact that a large 
nonrandom error occurred in the computation of the 
invariants involving the 204 reflection is, of course, 
consistent with the facts that its phase was wrongly 
indicated in the least-squares phase calculations, and 
that it had a comparatively high residual (see Table 4). 
The 201 reflection is unusual in that it is involved in 
several invariants whose observed values are small, and 
the observed errors for such invarian'ts are discussed in 
greater detail below. 

Table 6. R.m.s. and average deviations of epiandrosterone 
invariants involving a common reflection 

Number of R .m.s .  Average 
Reflection invariants deviation deviation 

20~ 21 0-48 0.19 
30~ 22 0.50 0-21 
20~ 15 0.64 -0.56 
60~ 26 0.55 -0.19 
203 32 0.53 -0.19 
503 43 0.32 0.08 
805 22 0.38 0.16 
10~ 45 0.30 -0.20 
40~ 44 0.37 0.17 
40T 49 0.34 0.03 
100 30 0.42 -0.04 
001 48 0.41 0.04 
201 26 0.71 0.00 
203 23 0.44 -0.02 
603 20 0.60 0.31 
105 35 0.37 --0.01 
205 24 0.37 0.09 

* The deviation is the difference between the predicted and 
the observed values of cos (Ol + ~02 + ~03). 

Examination of the observed invariants presented in 
Table 3 also shows that the invariant involving 11T, 
604, and 513, which was predicted to be significantly 
different from + 1 and which was presumed to cause 
selection of the enantiomorph, has an observed value 
of + 1. Consequently, the enantiomorph was not really 
specified until ~011 ~ was selected in the second cycle. 
This example points out the critical nature of the in- 
variant(s) which actually result in enantiomorph selec- 
tion. It would be desirable to try several different ways 
of selecting the origin until a case could be found where 
there are at least two collaborating invariants not equal 
to + 1 that contribute to the phase assignment which 
specifies the enantiomorph. In the present situation, 
enantiomorph selection actually took place at the later, 
second cycle, not the first. As it turned out, one and 
only one phase had substantially different values for 

Table 7. Comparison of four E maps resulting from different initial choice of phase for 11"2 and 512 

Phase(s) forced to Number of real atoms 
second minimum in among top 30 Rank of largest R.m.s. 

Map cycles 2 and 3 peaks spurious peak deviation* 
1 - -  16 1 0.29 A 
2 112 20 19 0.13 
3 51~ 17 7 0.27 
4 112, 51~ 16 6 0.39 

* R.m.s. deviation (in A) of original map positions from refined atomic positions. 
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the two enant iomorpbs  in the second cycle and so the 
enan t iomorph  was unambiguously  selected, unwitting- 
ly, in this cycle. However, even if, unsuspected by the 
investigator, enan t iomorph  selection were to occur  
during a cycle in which two or more phases, one of  
which alone would suffice for enan t iomorph  selection, 
were simultaneously determined, no damage would be 
done. In such a situation all combinat ions would yield 
the same least-squares  residuals, one combinat ion  
would correspond in a consistent way to one choice of  
enant iomorph,  another  to the other choice, and all 
possibilities would normal ly  be considered. 

To determine if the epiandrosterone molecule could 
be found at the correct posi t ion on a Fourier  map 
resulting f rom phases determined by the least-squares 
analysis of  the structure invariants wi thout  making  
any assumptions concerning molecular  packing, four 
addi t ional  syntheses were computed.  In each case, 
~020 ~ was taken to be n, and the phasing differed on the 
basis of  the initial phase used for l i e  and 512, two of  
the reflections for which two equal least-squares 
minima had been calculated. Also in each case, 150 

phases were determined by the least-squares analysis, 
but  only 8 cycles (two of  which were refinement cycles) 
were performed with the tangent formula,  and a total  
of  only 330 phases were determined, which is approx- 
imately 15 phases per nonhydrogen  a tom in the asym- 
metric unit. The epiandrosterone molecule was found  
in the correct posi t ion on each of  the resultant  four 
maps a l though the definition of  the molecule was 
considerably better in one case (map 2 ) a s  shown in 
Table 7 by the values of  the average r.m.s, deviation of  
the atoms f rom their refined positions, the number  of  
real atoms among the highest thirty peaks on the map,  
and the rank  of  the largest spurious peak after the 
peaks had  been sorted according to their relative 
heights. As expected, choice of  the second least-squares 
phase for 112 resulted in selection of  the second enan- 
t iomorph.  The large ind iv idua l  deviations on map 4 
make it doubtful  whether the molecule could have 
been recognized had the correct posi t ion not  been 
known,  but  nevertheless, it was possible to refine this 
molecule to the correct solution. Since the deviations 
for the map of  the computed synthesis using the second 

Table 8. R.m.s. deviations of  the predicted structure invariants, cos (~oi ÷ (o2 ÷ q)3),from the observed values for the 
refined structure 

The column headings are threshold values for lEd. When IEll > 1"0 or 1-5, only the permutation kl = hi, k3 = h3 was used to compute 
the averages in equation (10). When lEd > 2.0, 2.25 or 2.5, the three even permutations of kl, k2 and k3 were used. 

(a) R.m.s. deviations for the epiandrosterone invariants. 

No. of 
invari- p = ½ 

A range ants 0.0 1.0 1.5 2.0 2.25 
0-2-0.4 36 0.78 0 .68  0 .71  0-67  0.71 
0.4-0.6 254 0.61 0.62 0 .61  0 .58  0.58 ~ 
0.6-0-8 362 0.53 0 .58  0.56 0.54 0.54 
0-8-1.0 369 0.50 0 .53  0-52  0 .51  0.52 
1 . 0 - 1 . 2  244 0.49 0 .49  0 .48  0 .47  0.47 
1.2-1.4 170 0.40 0 .38  0-38 0-38 0.38 
1.4-1.6 138 0-42 0.44 0 .43  0-43 0.44 
1-6-1.8 119 0.31 0.32 0.32 0.32 0-32 
1 . 8 - 2 . 0  80 0.33 0.32 0 .33  0.32 0-33 
2.0-2-2 57 0.35 0 .39  0 .38  0.36 0.37 
2.2-2.4 37 0.30 0.34 0.33 0.32 0.32 
2-4-2.6 29 0.30 0.34 0.34 0 .33  0.33 
2.6-2.8 21 0-25 0.22 0 .21  0 .21  0.22 
2.8-3-0 8 0.29 0.20 0 .21  0.22 0.21 
3.0-5.0 47 0.24 0 .28  0 .27  0 .26  0.26 
0.2-5.0 1971 0.48 0.50 0.49 0 .47  0.48 

p = 2  
2.5 0-0 1.0 1.5 2.0 2.25 2-5 

0.92 0.84 0 .75  0 .78  0 .79  0-84  1-09 
0.64 0.60 0.60 0.60 0.60 0 .61  0.75 
0.58 0.59 0.60 0.60 0.60 0 .61  0.71 
0.56 0.57 0.56 0-57 0-60  0.62 0.76 
0.51 0.57 0.54 0 .55  0 .58  0.60 0.81 
0.42 0.48 0 .45  0.46 0.48 0.50 0.64 
0.47 0.52 0-49 0.50 0.54 0.56 0-75 
0.35 0.41 0 .38  0-39 0-40  0-42  0:57 
0.37 0.47 0.42 0-44  0 .47  0 .51  0-68 
0.39 0.46 0 .45  0.46 0 .49  0.52 0.67 
0.33 0.38 0 .36  0 .37  0 .37  0 .39  0.47 
0-36 0 . 4 4  0.43 0.45 0.47 0 .49  0.72 
0.25 0.40 0 .36  0 .35  0.36 0 .41  0.52 
0.23 0.31 0-25  0 .25  0 .27  0 .27  0.32 
0.28 0.46 0-45 0 .45  0.49 0 .55  0.72 
0.53 0.55 0 .53  0.54 0.56 0 .58  0.73 

(b) R.m.s. deviations for the 5fl-androstane-30c,17fl-diol invariants 

• N o .  o f  
invar- The exponent p = ½ 

A range iants 0.0 1.0 1.5 2.0 
1.0-1.2 23 0.47 0.64 0 .57  0.57 
1.2-1.4 115 0.57 0-47 0 .45  0.45 
1.4-1.6 187 0 . 5 3 0 . 4 3  0 .43  0.41 
1.6-1.8 229 0.54 0.44 0.44 0.42 
1.8-2.0 239 0.45 0-38 0 .38  0.36 
2-0-2.2 227 0.41 0 .37  0-36 0.35 
2.2-2.4 173 0.38 0.24 0.24 0.26 
2-4-2.6 150 0.35 0 .25  0 .25  0.24 
2-6-2-8 108 0-36 0.30 0 .29  0.28 
2.8-3.0 70 0.37 0 .27  0-27 0.26 
3.0-9.0 382 0.29 0.20 0 .19  0.19 
1-0-9.0 1903 0"43 0"35 0-34 0-33 

2.25 
0"61 
0-44 
0.41 
0"44 
0.37 
0.36 
0.27 
0"25 
0"28 
0.26 
0"20 
0-34 

2"5 
0.67 
0"48 
0.47 
0-46 
0.41 
0-40 
0.33 
0.30 
0"33 
0.29 
0.24 
0"38 



H E R B E R T  H A U P T M A N ,  J A N E T  F I S H E R  AND C H A R L E S  M. WEEKS 1559 

phase for 112 were markedly smaller than those found 
on the other maps, and since this map had many fewer 
spurious peaks with a height comparable to the height 
of the real atoms, it was expected that the corresponding 
residuals for the least-squares phase determination 
cycles might be significantly less than in the other cases, 
but this was not observed to be true. Furthermore, the 
observed residuals were about the same as those en- 
countered in the least-squares run which eventually 
resulted in a Fourier map on which the molecule was 

m 

translated perpendicular to the 204 plane. 
To determine the overall accuracy of the invariants 

used to solve the structure, and to see if some groups 
of invariants are calculated more accurately than 
others, the true invariants were computed, and the 
r.m.s, deviation of the predicted invariants from their 
observed values was used as an indicator of the preci- 
sion of invariants calculated using equation (10). For 
purposes of this comparison, invariants predicted to be 
greater than + 1 or less than - 1 were not forced to the 
nearest allowed value of the cosine. If the predicted 
invariants were distributed at random, then the ex- 
pected value of the r.m.s, deviations of the invariants 
from their observed values ranges from 1.15 for very 
large values of A to 0.82 for very small values of A if 
all invariants are calculated to be within the allowed 
range of the cosine. The observed values of 0.48 for 
1971 epiandrosterone invariants and 0.43 for 1903 
invariants for 5fl-androstane-3c~,17fl-diol are substan- 
tially smaller than this. The invariants were then 
grouped according to the value of A, and the r.m.s. 
deviation was computed for each range of A values. 
The results for epiandrosterone are presented in 
Table 8(a) and show that predicted invariants with 
high values of A (1.5-5.0) are computed much more 
accurately than are those with low A (0.0-1.0). Similar 
data for 5fl-androstane-3cql7fl-diol are given in Table 
8(b) and confirm the observation that the accuracy of 
predicted invariants increases as A increases. It should 
be recalled that the invariants actually used to solve 
these structures were computed using an exponent p 
[see equation (10)] equal to -}2, and 1 ranged over all 
measurable reflections (i.e. IE I I > 0). 

It is also a point of interest to determine if the range 
of 1 can be restricted since the computation of gt is 
time consuming even on very fast computers. Conse- 
quently, ~u was computed for the epiandrosterone and 
5fl-androstane-3cq 17fl-diol invariants by imposing each 
of the restrictions IE, I > 1.0, 1.5, 2.0, 2.25, and 2.5 in 
turn. The calculation of the epiandrosterone invariants 
was also repeated using an exponent p = 2  to test ex- 
perimentally the relative reliability of exponents 2 and 
~-. The r.m.s, deviations of the invariants computed by 
each of these methods are shown, as a function of A, 
in Table 8, and the approximate number of contribu- 
tors to ~' computed by making the various restrictions 
on the range of 1, as well as the amount of time re- 
quired to calculate 1971 epiandrosterone invariants by 
each. method, are listed in Table 9. These data demon- 

strate that a substantial amount of time can be saved, 
without sacrificing accuracy, by restricting the range of 
1. There is little difference in the accuracy of invariants 
computed with the different restrictions for either 
structure except for those computed with 1E~1>2.5 
which have slightly larger deviations. However, in view 
of the small number of contributors to v/when lEvi is 
required to be greater than 2, and that the amount of 
computing time required is not much greater when 
lEvi >2,  it is suggested that the optimum procedure 
would be to require that lEvi be greater than 2. The 
theoretical justification for this restricted averaging 
process will be published at a later date. The invariants 
computed using exponent p = 2 seem to be less accurate 
than those computed using p=½, especially at higher 
values of A. Since invariants with large A are in general 
the most accurate and the most useful invariants, it 
seems to be advisable to use exponent P-7-  1 rather than 
an exponent equal to 2. 

Table 9. Number o f  contributors to individual averages 
[equation (11)] and IBM 1130.]: computing time required 
to calculate 1971 structure invariants for  epiandrosterone 

using various restrictions on the range o f  l 

Number of Time 
lEll > contributors (hours) 
0-0 2000-4000 13.25 
1"0" 400-800 4"5 
1 "5* 150-300 1 "75 
2"0]" 150-300 1"5 
2.25]" 100-200 1 "0 
2.5]" 50-100 0"5 

* Using only the permutation kl =h i  and k3 =h3. 
t All three even permutations used to generate contribu- 

tors. 
3.6/is, 8K word core, single-disk storage. 

If the three vectors in a given triple are denoted by 
kl ,  k2, and k3, three different values of gt may be com- 
puted by permuting the order of the vectors in the triple 
if the range of 1 depends on ]E~]. For example, one 
value is obtained by making the equivalences k l = h l  
and k a = h 3  [where  hi and h3, as used in equation (11), 
are any two of the three vectors in the triple], and 
other averages are formed if ka=h  1 and kE=h3 or 
k2 = h l  and k l - - h a .  If I ranges over all measurable re- 
flections (i.e. JEll > 0), the three even permutations of 
vectors in the triple (kl,kE, k3) will result in the same 
value for g/. No new values will be obtained by a per- 
mutation of the type k l=h3 and ka=hb  because the 
only difference in the way in which hi and ]13 enter into 
equation (11) is that h 3 is used in the form -h3  whereas 
the sign of hi is not changed, and the change of sign on 
h3 is compensated by the fact that, for every vector l 
which is used, - l  is also used. When the restrictions 
[Ez[> 1.0 or 1.5 were made, only the permutation 
kl  - -h i  and k 3 = h3 was  used, whereas all three permuta- 
tions were made and entered into the averages when the 
range of I was more severely restricted. The dependence 
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of  K on A, as a func t ion  of  the res t r ic t ion imposed  on 1, 
was also studied,  a n d  the results  are seen in Fig. 2. K 
appears  to become largely  i ndependen t  o f  A as the 
restr ic t ion on the r ange  of  I becomes  more  severe, and  
when  IEzI is requi red  to be greater  t han  2 (or larger),  
i t  seems to be a cons tant .  

A fur ther  s tudy  o f  the errors  enter ing  in to  the cal- 
cula t ion of  the s t ructure  invar ian t s  revealed tha t  the  
m a g n i t u d e  of  such errors  depends  on  the observed 
values  o f  the invar iants .  The  average a n d  r.m.s,  devia- 
t ions  for  two of  the sets o f  invar ian t s  c o m p u t e d  us ing  
p = ½  a n d  a scal ing p a r a m e t e r  hav ing  a l inear  de- 

pendence  on A, are shown  in Table  10 for  var ious  
ranges  o f  the observed values  o f  the invar iants .  The  
m a j o r  conc lus ion  to be d rawn  f rom these da ta  is t ha t  
invar ian ts  whose  observed values  are smal l  are the 
mos t  poo r ly  computed .  N o t  on ly  is the r.m.s, dev ia t ion  
for  these invar ian t s  much  larger  t han  the devia t ions  
f o u n d  when  the observed va lue  is larger,  bu t  the 
average devia t ion  is also very large a n d  indicates  tha t  
there  is a subs tan t ia l  n o n r a n d o m  error  enter ing  in to  the 
c o m p u t a t i o n  of  such invar ian t s  which  appear ,  on  the 
average,  to be ca lcu la ted  subs tan t ia l ly  larger  t han  they 
rea l ly  are. F u r t h e r m o r e ,  this  t rend  is i n d e p e n d e n t  o f  A. 

Tab le  10. R.m.s. and average deviations of  the computed structure invariants grouped according to the true values 
of  the invariants 

The deviations are (COSpredicted--COSobserved). 

(a) •Deviations for the epiandrosterone invariants: 

A 
0"0-1"0 

A 
1"0-1"5 

A 
1"5-5-0 

Observed cos (~0x + ~02 + ~3) 
-- 1"00 0"00 0"25 0"50 

to to to to 
- 0"00 0"25 0"50 0-75 

No. of invariants 204 68 112 163 

JEll > 0 avg. dev. 0.64 0.18 0.15 -0 .04  
r.m.s, dev. 0.62 0-17 0.24 0-22 

IEll > 2 avg. dev. 0.90 0.36 0.26 0.04 
r.m.s, dev. 0.95 0.19 0.16 0.12 

No. of invariants 54 21 50 74 

lEd > 0 avg. dev. 0.69 0.35 0.25 0.00 
r.m.s, dev. 0.60 0.20 0.19 0.16 

IEll > 2 avg. dev. 0.94 0.48 0.32 0.08 
r.m.s, dev. 0.96 0.28 0.17 0.07 

No. of invariants 25 10 18 64 

IEll > 0 avg. dev. 0.83 0.16 0.23 0.12 
r.m.s, dev. 0.79 0.09 0.15 0.07 

IEII > 2 avg. dev. 1.09 0.44 0.36 0.14 
r.m.s, dev. 1.31 0.23 0.20 0.04 

0.75 
to 

1.00 

474 

-0-16 
0.23 

-0 .16 
0.13 

290 

-0.13 
0"14 

--0-10 
0"07 

344 

--0"04 
0"06 

--0"07 
0"03 

(b) Deviations for the 5fl-androstane-3~,17fl-diol invariants 

- 1 . 0 0  
to 

0.00 

No. of invariants 26 

a ¸ 

1 . 0 - 1 , 5  

_ 

led > 0 avg. dev. 
r.m.s, dev. 

IEll > 2 avg. dev. 
r.m.s, dev. 

0.51 
0.58 

0.94 
0.99 

No. of invariants 76 

A 
1.5-90 

lEd > 0 avg. dev. 
r.m.s, dev. 

IEll > 2 avg. dev. 
r.m.s, dev. 

0.28 
0.30 

0.78 
0.70 

Observed cos (q~l + ~02 + q~3) 
0"00 0.25 0.50 0-75 
to to to to 

0"25 0"50 0"75 1"00 

12 26 44 122 

0"02 - 0.11 0"05 - 0"08 
0.11 0"36 0"29 0.27 

0"22 0"17 0"15 -0 .10 
0"11 0.14 0"10 0-10 

42 86 213 1256 

0.18 0"06 - 0"02 - 0"04 
0.19 0"17 0"15 0.16 

0.50 0.28 0"11 - 0.04 
0"30 0"14 0.07 0"05 
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It does seem to be true that invariants whose observed 
values are near unity are computed more accurately if 
A is large, but the dependence of accuracy on A is not 
as striking as the dependence of accuracy on the ob- 
served value of the invariant. Consequently, the large 
r.m.s, deviations seen when all invariants with low A 
are grouped together result primarily from the fact 
that invariants whose observed values are relatively 
small are much more frequent at low A. 

Summary 

The following conclusions are based on the analysis of 
the epiandrosterone and 5fl-androstane-3~,17fl-diol 
data. 

1. If an incorrect phase assignment is made in the 
early stages of a phase buildup, the molecule may still 
appear on a resulting Fourier map but be translated 
perpendicular to the planes having the same indices as 
the reflection in question. 

2. Invariants involving certain reflections may be 
computed less accurately than a general set of invar- 
iants, and they may be subject to a nonrandom error. 

3. The residuals calculated during the least-squares 
phase determining procedure do not distinguish all 
false minima from the true minimum. 

4. An exponent p=½ in equation (11) seems to be 
somewhat more reliable than an exponent p = 2.0. 

5. Invariants computed after imposing restrictions 
on JEll are, on the average, as accurate as those com- 
puted when I is allowed to range over all reflections, but 
computing time is substantially less. The condition 
ILl I> 2 is suggested for general use. 

6. The scaling parameter K is largely independent of 
A when the range of I is severely restricted. When the 
range of I is unrestricted, K is a function of A, and in 
the case of these structures, the dependence was linear. 

7. Invariants whose observed values are large are 
computed more accurately than those which are, in 
reality, small. Invariants which are small show a rela- 
tively large nonrandom error since their predicted 
values are usually larger than their observed values. 

8. Invariants with large A appear to be computed 

much more accurately than invariants with small A, 
but this is largely a reflection of lower accuracy of the 
computation of invariants whose observed values are 
relatively small because such invariants are more fre- 
quent at low A. 
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